CHAPTER 7 SYSTEMS DEVELOPMENT

Management Information Systems, 10th edition, By Raymond McLeod, Jr. and George P. Schell © 2007, Prentice Hall, Inc.

Learning Objectives

- Recognize the systems approach as the basic framework for solving problems of all kinds.
- Know how to apply the systems approach in solving systems problems.
- Understand that the systems development life cycle (SDLC) is a methodology—a recommended way to develop systems.
- Be familiar with the main SDLC approaches—the traditional waterfall cycle, prototyping, rapid application development, phased development, and business process redesign.
- Know the basics of modeling processes with data flow diagrams and use cases.
- Understand how systems development projects are managed in a top-down fashion_08m.com

Introduction

- Both managers and systems developers can apply the systems approach when solving problems
- The approach consists of three phases of effort:
 - Preparation consists of viewing the firm as a system, recognizing the environmental system, and identifying the firm's subsystems
 - Definition involves proceeding from a system to a subsystem level and analyzing system parts in a certain sequence
 - Solution involves identifying the alternative solutions, evaluating them, and selecting the best one

THE SYSTEMS APPROACH

- John Dewey identified three series of judgments involved in adequately resolving a controversy
 - 1. Recognize the controversy
 - 2. Weigh alternative claims
 - 3. Form a judgment
- During the late 1960s/early 1970s, interest in systematic problem solving strengthened
- Management scientists and information specialists produced a recommended framework that became known as the **systems approach**—a series of problem-solving steps that ensure the problem is first understood, alternative solutions are considered, and the selected solution works (Figure 7.1)

Figure 7.1 Phases and Steps of the Systems Approach

- Step 1. View the firm as a system
- Step 2. Recognize the environmental system
- Step 3. Identify the firm's subsystems

Phase II: Definition effort

- Step 4. Proceed from a system to subsystem level
- Step 5. Analyze system parts in a certain sequence

Phase III: Solution effort

- Step 6. Identify alternative solutions
- Step 7. Evaluate the alternative solutions
- Step 8. Select the best solution
- Step 9. Implement the solution
- Step 10. Follow up to ensure that the solution is effective

The System's Approach (cont.)

- 1. If a manager can also regard the levels of management as subsystems, the importance of information flows becomes clear
- A problem trigger a signal that things are going better/worse than planned – usually stimulates a definition effort
- 3. A top-down analysis then begins of the system for which the manager is responsible
- 4. As the manager studies each system level, the system elements are analyzed in sequence (Figure 7.3)

Steps towards a Solution

- 1. Identify Alternative Solutions
- 2. Evaluate the Alternative Solutions
- 3. Selecting the Best Solution Involves:
 - Analysis
 - Judgment
 - Bargaining
- 4. Implement the Solution
- 5. Follow Up to Ensure That the Solution Is Effective

THE SYSTEMS DEVELOPMENT LIFE CYCLE

• The system life development cycle (SDLC) is an application of the systems approach methodology to the development of an information system

THE TRADITIONAL SDLC

- It didn't take the first system developers long to recognize a sequence if the project was to have the best chance of success:
 - Planning
 - Analysis
 - Design
 - Implementation
 - Use
- Figure 7.4 illustrates how the life cycle phases can fit into a circular pattern over time

PROTOTYPING

- A **prototype** is a version of a potential system that provides the developers and potential users with an idea of how the system will function when completed
- In prototyping, a prototype is produced as quickly as possible, perhaps overnight, to obtain user feedback that will enable the prototype to be improved
- Figure 7.5 shows the four steps involved in developing an evolutionary prototype
- Figure 7.6 shows the steps involved in developing a requirements prototype
- As prototyping has proven to be one of the most successful methodologies, it would be difficult to find a development project that didn't use it to some degree

RAPID APPLICATION DEVELOPMENT

- Rapid Application Development (RAD), is a term coined by James Martin. It refers to a development life cycle intended to produce systems quickly without sacrificing quality
- Information engineering is the name that Martin gave to his overall approach to system development, which treats it as a firm-wide activity, while the term enterprise is used to describe the entire firm
- Figure 7.7 illustrates the top-down nature of information engineering, involving both data (the left face of the pyramid) and activities (the right face)

Figure 7.7 Rapid Application Development Is an Integral Part of Information Engineering

Source: James Martin, Rapid Application Development (New York: Macmillan, 1991), Figures 3.23 and 21.2 (combined). © 1991. Adapted by permission of Prentice Hall, Upper Saddle River, NJ.

RAD (cont.)

- RAD requires four essential ingredients:
 - Management
 - People
 - Methodologies
 - Tools
- Of all the components of information engineering, RAD has probably enjoyed the greatest support

PHASED DEVELOPMENT

- This is an approach for developing information systems that consists of six stages:
 - 1. Preliminary investigation
 - 2. Analysis
 - 3. Design
 - 4. Preliminary construction
 - 5. Final construction
 - 6. System test and installation
- The analysis, design, and preliminary construction stages are taken for each system module
- The six phased development stages are illustrated in Figure 7.8
- Figure 7.9 illustrates how the module phases are integrated into the system? development ¹⁹

Figure 7.9 Analysis, Design, and Preliminary Construction Are Performed on Each System Module

21

BUSINESS PROCESS REDESIGN

- The process of reworking the systems has been called reengineering or business process redesign (BPR)
- BPR affects the firm's IT operation in two ways:
 - 1. IT can apply BPR to the redesign of **legacy systems** that can no longer be kept alive by ordinary maintenance
 - 2. When a firm applies BPR to its major operations, the effort invariably has a ripple effect that results in the redesign of information systems
- IT has devised **reverse engineering**, **restructuring**, and **reengineering** that can be applied separately or in combination for applying BPR http://www.deden08m.com 22

Three Techniques for Applying **BPR**

- 1. As used in computing, reverse engineering is the process of analyzing an existing system to identify its elements and their interrelationships, as well as to create documentation in a higher level of abstraction than currently exists.
- 2. Restructuring is the transformation of a system into another form without changing its functionality
- 3. Reengineering is the complete redesign of a system with the objective of changing its functionality
- The proper mix depends on the current state of the system in terms of its functional and technical quality. Figure 7.10 is a diagram that shows these two influences http://www.deden08m.com 23

Figure 7.10 BPR Component Selection Is Based on Both Functional and Technical Quality

Sources: David Sharon, "The Psychology of Reengineering," IEEE Software 8 (November 1991), 74 © 1990 IEEE; and "Three R's: A White Paper on Application Re-Development," The Re-Development Investigation Team, Texaco Information Systems Enabling Center, Texaco, Inc. (January 30, 1992), 10.

PUTTING THE TRADITIONAL SDLC, PROTOTYPING, RAD, PHASED DEVELOPMENT, AND BPR IN PERSPECTIVE

- The traditional SDLC, prototyping, RAD, and BPR are methodologies that are recommended ways of developing an information system
- Currently, firms are revamping many systems that were implemented with computer technology that is now obsolete
- The name BPR is used for this. Prototyping, RAD, and phased development can be utilized in a BPR project to meet users' needs in a responsive way

Process Modeling

- As developers perform analysis and design, they model the system data, processes, and objects
- A data flow diagram (DFD) is a graphic representation of a system that uses four symbol shapes representing: (1) environmental elements with which the system interfaces, (2) processes, (3) data flows, and (4) storage of data to illustrate how data flows through interconnected processes
- Figure 7.11 illustrates a DFD system that a firm might use to compute commissions for its sales representatives
- Figure 7.12 is a context diagram of the sales commission system
- Figure 7.13 shows an Figure 4 diagram

Figure 7.11 A Data Flow Diagram of a Sales Commission System

Figure 7.12 A Context Diagram of a Sales Commission System

Figure 7.13 A Figure 4 Diagram of a Sales Commission System

Use Cases

• A use case is a narrative description in an outline form of the dialog that occurs between a primary (usually a computer program) and a secondary system (a person interacting with the computer program)

There are two use case formats:

- A continuous narrative with each action numbered sequentially; and
- The other is called the **ping pong format** because it consists of two narratives and the numbering indicates how the tasks alternate between the primary and secondary systems (Figure 7.14)
- A set of guidelines for preparing a use case in the ping pong format is shown in Figure 7.15

Figure 7.14 A Use Case

Use case name: Description: Prerequisites: Associations: Principle Actor:	Enter sales order data Data entry operation for order entry system Create customer, create item Main menu Data entry operator							
Data Entry Operator		System						
 Data Entry Operator 1.0 Operator logs on with a password 1.0-A Return to main menu 1.1-A Go to 7.0-A 3.0 Operator enters customer number, item number, and item quantity 3.0-A Return to main menu 3.1-A Go to 7.0-A 6.0 Go to 3.0 6.0-A Return to main menu 6.0-A Log off 		 2.0 System verifies operator and prompts operator to enter additional information 2.0-A System does not verify operator and prompts to reenter 2.1-A Go to 1.0 4.0 System verifies customer number and item number 4.0-A System does not verify customer number and item number 4.1-A System displays an error message and prompts operator to reenter 4.2-A Go to 3.0 5.0 System saves order data 7.0 System logs employee off 7.0-A System displays main menu 						

Figure 7.15 Use Case Guidelines

Use Case Guidelines

- Begin numbering with 1.0 on the left-hand side to represent the first user action. Example: 1.0 Employee logs on with a password.
- 2. The first entry in the right-hand side should be 2.0, for the first system action.
- Use decimal numbers to indicate sfeps taken in a sequence that are all part of a particular action. Otherwise, use ascending whole numbers (3, 4, 5, etc.).

Example: 2.0 System verifies user

2.1 System prompts user to enter additional information

4. Append an alphabetical letter to a sequence number for an alternate event.

Example: 2.0-A System does not verify user

2.1-A System prompts user to reenter password

5. When there are mutually exclusive alternate events, use multiple alphabetical letters.

For subsidiary actions, use a whole number for the basic action, followed by decimal numbers for the subsidiary actions.

Example: 3.0 User creates report

3.1 User specifies starting and ending dates

3.2 User specifies report type

For optional actions, use a whole number for the basic action, followed by decimal numbers and alphabetical letters for the optional actions.

Example: 3.2 User specifies report type

3.3-A User specifies summary tabular report

3.4-A User specifies detailed tabular report

3.5-A User specifies graphical report

8. At the end of the process, the user should choose to repeat the process or log off.

Example: 10.0 User returns to the main menu

10.0-A User logs off

9. When the user logs off, the system should respond by logging the user off.

Example: 11.0-A System logs user off.

PROJECT MANAGEMENT

- Today, it is possible for life cycle management to span several organizational levels and involve managers outside of IT
- Figure 7.16 shows the hierarchical nature of project management
- In this example, there are five development projects going at the same time, all managed by the MIS steering committee

Figure 7.16 Managers of a System Life Cycle Are Arranged in a Hierarchy

The MIS Steering Committee

- The MIS Steering Committee performs three main functions:
 - It establishes policies that ensure computer support for achieving the strategic objectives of the firm
 - It provides fiscal control by serving as the approval authority for all requests for computer-related funds
 - It resolves conflicts that arise concerning priorities for computer use

Project Leadership

- A **project team** includes all of the persons who participate in the development of an information system
- A team might have as many as a dozen members, consisting of some combination of users, information specialists, and may include an internal auditor
- A team or project leader, who provides direction throughout the life of the project, directs the team activity

The Project Management Mechanism

- The basis for project management is the project plan
- A popular format for a detailed plan is a Gantt chart, which identifies the tasks, who will perform them, and when they will be performed
- A Gantt chart is a horizontal bar chart that includes a bar for each task to be performed arranged in a time sequence
- Figure 7.17 is the first part of a Gantt chart, prepared using a Microsoft Excel spreadsheet
- A complement to the Gantt chart is the **network diagram.** Figure 7.18 is a high-level network diagram that identifies the phases of a project 37

Figure 7.17 A Gantt Chart

ID	Task Name	Duration	Start	Finish	Resource Names	Sep 29, 102 Oct 6, 102	Oct 13
1	Phase 1: Preliminary Investigation	21 days	Mon 9/30/02	Mon 10/28/02		o m i w i r o o m i w i	r o o m
2	Analysis	9 days	Mon 9/30/02	Thu 10/10/02	Team		
3	A-1 Initiate Contact with ECI	2 days	Mon 9/30/02	Tue 10/1/02	Team	Team	
4	A-2 Hold Group Meeting to Prepare for Initial Contact	1 day	Wed 10/2/02	Wed 10/2/02	Team	Team	
5	A-3 Conduct Initial Group Meeting in JAD	1 day	Wed 10/2/02	Wed 10/2/02	Team	Team	
6	A-4 Document Organization Background	6 days	Thu 10/3/02	Thu 10/10/02	Umang		Umang
7	A-5 Document Organization Chart	6 days	Thu 10/3/02	Thu 10/10/02	Umang		Umang
8	A-6 Document Project Definition	6 days	Thu 10/3/02	Thu 10/10/02	Umang		Umang
9	A-7 Document Problem Chain	6 days	Thu 10/3/02	Thu 10/10/02	Deborah		Deborah
10	A-8 Document Goal Analysis	6 days	Thu 10/3/02	Thu 10/10/02	Phil		Phil
11	A-9 Document Risk Evaluation	6 days	Thu 10/3/02	Thu 10/10/02	Phil		Phil
12	A-10 Document Existing/Proposed System	6 days	Thu 10/3/02	Thu 10/10/02	Phil		Phil
13	A-11 Document System	6 days	Thu 10/3/02	Thu 10/10/02	Kyle, Philip		Kyle, Philip
14	A-12 Document Requirements	6 days	Thu 10/3/02	Thu 10/10/02	Deborah		Deborah
15	A-13 Prepare Evaluation of System Solutions	6 days	Thu 10/3/02	Thu 10/10/02	Deborah		Deborah
16	Design	4 days	Fri 10/11/02	Wed 10/16/02			
17	D-1 Design Documentation Part of Delivery 1	2 days	Fri 10/11/02	Mon 10/14/02	Team		
18	D-2 Define Actions to Achieve Goals	2 days	Fri 10/11/02	Mon 10/14/02	Team		
19	D-3 Put a Project Control Mechanism in Place	2 days	Fri 10/11/02	Mon 10/14/02	Team		
20	D-4 Get Initial Approval for Documents	2 days	Tue 10/15/02	Wed 10/16/02	Team		
21	Construction	6 days	Thu 10/17/02	Thu 10/24/02			
22	C-1 Construct Documentation Part of Delivery 1	6 days	Thu 10/17/02	Thu 10/24/02	Team		
23	C-2 Construct Existing System Functions/Components Matrix	1 day	Thu 10/17/02	Thu 10/17/02	Kyle		
24	C-3 Construct Existing System Data Flow Diagrams	1 day	Thu 10/17/02	Thu 10/17/02	Kyle		
25	C-4 Construct Proposed System Functions/Components Matrix	1 day	Fri 10/18/02	Fri 10/18/02	Kyle		
26	C-5 Construct Proposed System Data Flow Diagrams	1 day	Fri 10/18/02	Fri 10/18/02	Kyle		
27	C-6 Construct Gantt Chart	6 days	Thu 10/17/02	Thu 10/24/02	Philip, Kyle		
28	Review	2 days	Fri 10/25/02	Mon 10/28/02			
29	R-1 Review Gantt Chart	1 day	Fri 10/25/02	Fri 10/25/02	Team		
30	R-2 Review Next Steps for Project with ECI	1 day	Fri 10/25/02	Fri 10/25/02	Team		
31	R-3 Attend Team Meeting Regarding Phase 1	1 day	Mon 10/26/02	Mon 10/28/02	Team		
32	Phase 2: Build Template	18 days	Tue 10/29/02	Thu 11/21/02			
33	Analysis	2 days	Tue 10/29/02	Wed 10/30/02			
34	A-1 Analyze Website Requirements	2 days	Tue 10/29/02	Wed 10/30/02	Phil, Deborah		
35	A-2 Analyze Website Design Alternatives	2 days	Tue 10/29/02	Wed 10/30/02	Deborah, Phil		
36	36 A-3 Analyze Search Functionality Priorities		Tue 10/29/02	Tue 10/29/02	Deborah, Phil		
37	37 Design		Thu 10/31/02	Mon 11/4/02			
38	D-1 Design Basic Website Templates	3 days	Thu 10/31/02	Mon 11/4/02	Deborah, Phil		
39	D-2 Design Serach Interface Templates	2 days	Thu 10/31/02	Fri 11/1/02	Deborah, Phil		
40	Construction	6 days	Tue 11/5/02	Mon 11/11/02			

Figure 7.18 A Network Diagram

END OF CHAPTER 7